MYRICETIN AND QUERCETIN METHYL ETHERS FROM HAPLOPAPPUS INTEGERRIMUS VAR. PUNCTATUS

E. AYANOGLU*, A. ULUBELEN*, W. D. CLARK†, G. K. BROWN†, R. R. KERR‡ and T. J. MABRY‡

* Faculty of Pharmacy, University of Istanbul, Istanbul, Turkey; † Department of Botany and Microbiology, Arizona State University, Tempe, Arizona, U.S.A.; † Department of Botany, The University of Texas at Austin, Austin, Texas, U.S.A.

(Received 21 October 1980)

Key Word Index—Haplopappus integerrimus var. punctatus; Compositae; myricetin 3,3',4'-trimethyl ether; myricetin 3',4'-dimethyl ether; quercetin methyl ethers.

Abstract—Nine flavonoids including two new myricetin derivatives, myricetin 3,4'-dimethyl ether and myricetin 3,3',4'-trimethyl ether, were obtained from *Haplopappus integerrimus* var. *punctatus*. The known compounds are quercetin 7,3'-dimethyl ether, quercetin 3,3'-dimethyl ether, quercetin 3,7-dimethyl ether, quercetin 3-methyl ether, quercetin 3-p-p-glucoside.

INTRODUCTION

Previous reports of flavonoids from South American *Haplopappus* concerned species of sections *Haplopappus* [1, 2] and *Polyphylla* [3, 4]. As a part of our continuing chemical investigation of this genus, we report here the flavonoids of *Haplopappus integerrimus* (Hook and Arn.) Hall var. *punctatus* (Willd.) Brown and Clark. This taxon has recently been treated in *Haplopappus* section *Steriphe* [5].

RESULTS AND DISCUSSION

Leaves of H. integerrimus collected in Chile were extracted with aqueous ethanol and the syrup obtained after concentrating the extract was partitioned between n-hexane, chloroform and ethyl acetate. Two-dimensional chromatography showed the flavonoids to be primarily in the chloroform and ethyl acetate concentrates. The combined chloroform—ethyl acetate concentrate yielded quercetin 7,3'-dimethyl ether (1) [6], quercetin 3,3'-dimethyl ether (2) [7], myricetin 3,3',4'-trimethyl ether (3), myricetin 3',4'-dimethyl ether (4), isorhamnetin, quercetin 3,7-dimethyl ether (5) [8], quercetin 3-methyl ether (6) [7], quercetin and its $3-\beta$ -D-glucoside.

The known compounds were identified by UV, MS and with the exception of the new 3',4'-dimethyl and 3,3',4'-trimethyl ethers of myricetin, direct TLC comparisons. The colors, TLC, UV and MS data for all the flavonoids are recorded in Tables 1 and 2. The structural assignments of the new compounds are discussed separately.

Myricetin 3,3',4'-trimethyl ether (3)

The MS of this new natural product gave M⁺ at m/z 360 in accord with a flavonoid containing three hydroxyl and three methoxyl groups, a result confirmed by the MS of the PDM derivative which exhibited M⁺ at m/z 411 in accord with three perdeuteriomethoxyl and three methoxyl groups. Furthermore, the NMR in CDCl₃ of the underivatized compound established a myricetin skeleton with three methyl ethers δ 3.88 (2 × OMe) and 3.92 (1 × OMe), and four doublets (J = 2.5 Hz) for H-6 and

H-8 at δ 6.18 and 6.45, and H-2' and H-6' at 7.25 and 7.28, respectively. Since the new flavonoid appeared purple with and without ammonia when viewed as a spot on paper over UV light (366 nm), two of the methoxyl groups should be at the 3- and 4'-positions and a C-5 hydroxyl should be present. Thus, the third methoxyl could only be at either the 7- or 3'-position, and since the NMR data indicated an unsymmetrical B-ring (two doublets for H-2' and H-6'), it must be at 3'. The UV as well as additional MS data (Table 2) confirmed the structure assignment. Band I in the UV spectrum in NaOMe exhibited a bathochromic shift of only 32 nm and with a lower intensity relative to band I (345 nm) in MeOH indicating substitution of the 4'-hydroxyl group. The presence of band III at 312 nm in the NaOMe spectrum and a 10 nm bathochromic shift in band II in the NaOAc spectrum relative to band II in the MeOH spectrum indicated an unsubstituted 7-hydroxyl group. Furthermore, the AlCl₃/HCl spectrum was typical for a 5,7-dihydroxy Aring and the lack of a shift of band I with NaOAc/H₂BO₂ showed that there was no ortho-dihydroxyl group in the B-ring. Both the MS of 3 and its PDM derivative gave fragments for M - 15 (m/z 345, 25% and 396, 50%, respectively) for loss of the 4'-methyl ether group while the PDM of myricetin gave a fragment for M - 18 (m/z 402, 95%) (M – CD₃).

Myricetin 3',4'-dimethyl ether (4)

A second new flavonol with a free 3-hydroxy (yellow color on paper over UV light and band I in MeOH at 362

3 $R_1 = R_3 = R_2 = Me$ 4 $R_1 = H, R_3 = R_2 = Me$

Table 1. Chromatographic data ($R_c \times 100$ and colors) for flavonoids of H. integerrimus var. punctatus

Compound	Cellulose					Colors*		
	15 % HOAc	40 % HOAc	TBA†	n-BAW†	Polyamide BMM†	UV	UV/NH ₃	UV/NA
Quercetin 7,3'-dimethyl						,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
ether (1)	1	22	74	90	67	y	y	y
Quercetin 3,3'-dimethyl								
ether (2)	1	51	78	90	73	p	y	у
Myricetin 3,3',4'-trimethyl								
ether (3)	3	62	75	96	83	p	p	br-y
Myricetin 3',4'-dimethyl								
ether (4)	10	30	75	90	62	y	y	у

^{*1}D TLC on cellulose and polyamide NM (Polygram). Colors were observed on paper for UV and UV/NH₃ and on TLC plates for NA: p = purple; y = yellow; or = orange; br = brown. NA refers to Naturstoffreagenz A.

nm) was isolated in amounts sufficient only for UV and MS. The MS of the compound indicated a flavonol with two methoxyl and four hydroxyl groups (M⁺ at m/z 346, 100%). An M – 15 peak at m/z 331 (55%) suggested one of the methoxyl groups could be at the 4' position, a conclusion confirmed by the NaOMe UV spectrum: band I exhibited a bathochromic shift of 53 nm with a lower intensity relative to band I in the MeOH. Since the MS also gave A₁ and B₂ fragments at m/z 152 (for an A-ring with two hydroxyl groups) (20%) and 181 (32%) (for a B-ring with one hydroxyl and two methoxyl groups), the second methoxyl group must be at the 3'-position.

EXPERIMENTAL

Plant material. Leaves of Haplopappus integerrimus var. punctatus were collected 30 km east of Los Angeles, Prov. Biobio, Chile in February 1979. A voucher specimen (Clark and Brown 1389) is deposited in the Herbarium of Arizona State University.

Extraction, purification and identification of flavonoids. The general chromatographic techniques have been described previously [3]. Ground leaves of H. integerrimus (200 g) were extracted with aq. EtOH (\times 5), and the combined extracts concd in vacuo to 250 ml. This aq. concentrate was successively extracted with n-hexane, CHCl₃ and EtOAc. The CHCl₃ and EtOAc concentrates were combined and chromatographed over

a Polyclar column (4 × 50 cm). Elution of the column was initiated with Egger's solvent (CH_2Cl_2 -MeOH-MeCOEt-Me₂CO, 20:10:5:1) and the polarity gradually increased by reducing the amount of CH_2Cl_2 . The compounds eluted in the following order: quercetin 7,3'-dimethyl ether (1) (5 mg), quercetin 3,3'-dimethyl ether (2) (5 mg), myricetin 3,3',4'-trimethyl ether (3) (12 mg), myricetin 3',4'-dimethyl ether (4) (3 mg), isorhamnetin (3 mg), quercetin 3,7-dimethyl ether (5) (6 mg), quercetin 3-methyl ether (6) (6 mg), quercetin (2 mg) and its 3-glucoside (4 mg).

Myricetin 3,3',4'-trimethyl ether (3). UV $\lambda_{\text{max}}^{\text{MeOH}}$ nm: 345 (1), 304 (sh), 264 (1.2); + NaOMe 377 (1), 312 (0.3), 273 (2); + AlCl₃ 400 (1), 348 (1.25), 305 (0.3), 276 (2); + AlCl₃/HCl 398 (1), 346 (1.3), 304 (0.8), 278 (3); + NaOAc 358 (1), 305 (0.9), 274 (1.8) and NaOAc/H₃BO₃ 348 (1), 306 (sh), 264 (1.15).

Myricetin 3',4'-dimethyl ether (4). UV $\lambda_{\rm max}^{\rm MeOH}$ nm: 362 (1), 305 (sh), 264 (1), 250 (sh); +NaOMe 415 (1), 324 (sh), 278 (1.25); +AlCl₃ 424 (1), 352 (0.25), 310 (sh), 270 (1.2); +AlCl₃/HCl 420 (1), 352 (0.2), 310 (sh), 270 (1.20); +NaOAc 380 (1), 300 (sh), 276 (1.5) and NaOAc/H₃BO₃ 430 (sh), 367 (1), 306 (sh), 266 (1.2).

Acknowledgements—The work at Arizona State University was supported by the National Science Foundation (Grant DEB-7823897), at the University of Texas by the Robert A. Welch Foundation (Grant F-130) and at the University of Istanbul by the Faculty of Pharmacy.

Table 2. MS data for flavonoids of H. integerrimus var. punctatus*

Compound	M ⁺	(M - 1)	(M + 1)	(M - 15)	(M - 43)	A_1	\mathbf{B}_{2}
1	330(100)	329(40)	331(42)	315(15)	287(20)	167(10)†	151(15)
2+	330			315		153†	151
3	360(85)	359(100)	361(47)	345(25)	317(15)	153(13)†	181(8)
3 PDM	411(100)	410(75)	412(30)	396(50)		187(10)†	198(10)
4	346(100)	345(20)	347(32)	331(55)	303(10)	152(20)	181(32)
5	330(100)	329(80)	331(25)	-	287(25)	167(20)†	137(20)
6	316(100)	315(80)	317(20)		273(35)	153(20)†	137(15)

^{*} MS were recorded at 70 eV, source temperature 200° and probe temperature from 250° to 425°. Values are given in m/z; in parentheses the % abundance relative to the base peak.

[†]The TLC solvents were: TBA = t-BuOH-HOAc-H₂O, 3:1:1; n-BAW = n-BuOH-HOAc-H₂O, 4:1:5; BMM = C_6H_6 -MeCOEt-MeOH, 4:3:3.

[†] These values are for $(A_1 + H)$ fragments.

[‡] Relative intensities are not given because of the poor quality of the spectrum.

REFERENCES

- Horhammer, L., Wagner, H., Wilkomirsky, M. T. and Iyenger, M. A. (1973) Phytochemistry 12, 2068.
- 2. Oksuz, S., Ulubelen, A., Clark, W. D., Brown, G. K. and Mabry, T. J. Rev. Latinoam. Quím. (in press).
- 3. Ulubelen, A., Clark, W. D., Brown, G. K. and Mabry, T. J. J. Nat. Prod. (in press).
- 4. Ulubelen, A., Ayanoglu, E., Clark, W. D., Brown, G. K. and Mabry, T. J. J. Nat. Prod. (in press).
- 5. Brown, G. K. and Clark, W. D. Syst. Botany (submitted).
- Wollenweber, E., Lebreton, P. and Chadenson, M. (1972) Z. Naturforsch. 27, 567.
- Yang, C. H., Braymer, H. D., Murphy, E. L., Chorney, W., Scully, N. and Wender, S. H. (1960) J. Org. Chem. 25, 2063.
- Castillo, J. B., Gonzales, A. G. and Eglinton, G. (1968) Ann. Quim. (Spain) 64, 193.